Using FFAGs in the Creation of Muon Beams

J. Scott Berg
Brookhaven National Laboratory
NuFact07
10 August 2007

What are FFAGs?

- Fixed Field Alternating Gradient Accelerator
- Fixed field:
 - Ramping magnets limit acceleration rate
 - Applications requiring rapid acceleration
- Alternating gradient:
 - Keep horizontal aperture small
 - □ In contrast to cyclotrons
- Wide energy acceptance in ring

Time of Flight Dependence on Energy

- Time of flight depends on energy
- Acceleration: must synchronize to RF
 - Vary the RF frequency
 - High losses if done too quickly
 - Other techniques, described later
- Cyclotron isochronous
 - High fields at relativistic energies

Proton Drivers

- Requirements for neutrino factory
 - □ Pulsed, somewhat high repetition rate
 (≈50 Hz)
 - □7–8 GeV or higher energy
- Energy too high for cyclotrons
- Repetition rate difficult for synchrotron
- Linac expensive, especially at higher energies
- Strong motivation to use FFAGs

Proton Driver Types of FFAGs

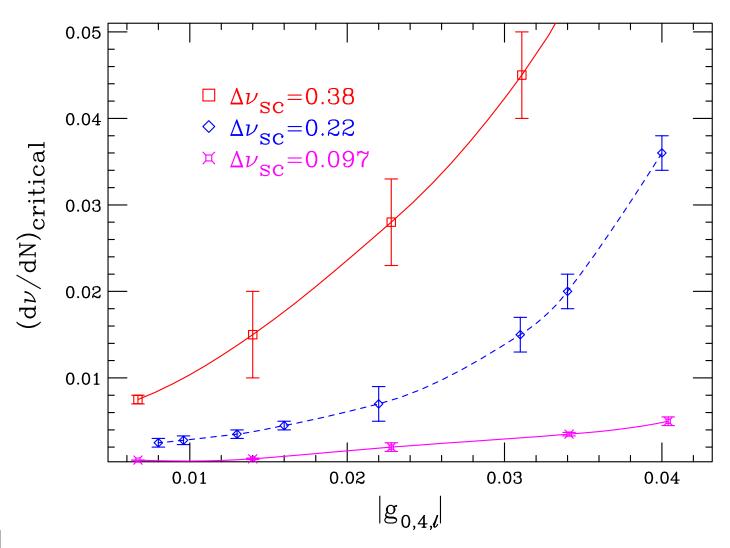
- Scaling FFAG
 - Studied in Japan, but nonrelativistic
 - Constant tune
- Linear non-scaling FFAG
 - Reduced aperture
 - Tunes not constant
 - Limits energy range of single stage, but may win with smaller apertures

Proton Driver Types of FFAGs

- Nonlinear, non-scaling FFAGs
 - □ Tunes constant
 - Aperture advantages?
 - Extremely nonlinear
 - High fields
 - Dynamic aperture issues?
 - Proposed in ISS neutrino factory study

- Achieves large dynamic apertures
- Requirements
 - Simple cells, all identical
 - Linear resonances driven only by errors
 - Highly linear magnets
 - Nonlinear resonances driven only weakly
 - Rapid acceleration
 - Pass through weak resonances quickly

- Significant effect in any proton driver
- Self-fields between particles
- Electric field pushes apart, magnetic field pulls together
 - Cancel at speed of light
 - \Box Goes as $1/\gamma^2$
- Increases with larger current



- Particular issue for linear non-scaling FFAG
 - Passes through all tunes
 - Acceleration rate isn't that fast
 - Limited by rate of RF frequency change, gradient
 - Variable frequency requires low frequency
 - No high gradient at low frequency, low Q
 - Space charge drives nonlinear resonances (Lee)

Acceleration Rate Required by Space Charge (S. Y. Lee)

- Constant-tune designs preferred
 - Avoid space-charge nonlinear resonance tunes
- Variable-tune solutions
 - Linear non-scaling FFAG
 - □ Need to determine required acceleration rate
 - R&D on rapid acceleration
 - Rapid frequency variation
 - High gradient

Space Charge MINHA Experiment

- Proposed experiment (Ruggiero)
- Study space charge effects in linear non-scaling FFAGs
- Use low-energy electrons
- Help determine required acceleration rate

Harmonic Number Jump

- Avoid varying RF frequency
- Use high-gradient, high-Q RF cavities
- Time of flight different on each turn
 - □ Same RF phase each pass
 - Different number of RF periods
- Energy gain different for each turn
 - Cavity voltage depends on position
 - Wide cavity for high frequency

Beams with Large Energy Spread

- Use energy acceptance of FFAG
- No net acceleration
 - But generally have some RF
- Transmit large energy spread beams
- Examples being built in Japan
 - □ PRISM
 - □ ERIT

Ionization Interactions

- Ionization interactions used in making neutrino beams
 - lonization cooling of muons
 - □ Ion production for beta beams (Rubbia)
- Energy straggling generates large energy spread
 - □ 10–20% for muon cooling
 - □ Small (?) for ion production (0.5% RMS)
- No acceleration: RF fixed frequency

Ionization Interactions FFAG Applicability

- Muon cooling
 - □ FFAGs have dispersion: 6-D cooling
 - Focusing not as strong as solenoid channels
 - Maybe better energy acceptance
 - Probably only useful in early stages
- Ion production
 - □ ERIT is very similar to Rubbia's system
 - □ Ion beam operates in different regime (?)
 - Low energy spread, FFAG not needed (?)

Muon Acceleration

- Different operating regime from proton driver
 - □ Acceleration exceedingly rapid: 5–20 turns
 - □ No time to adjust RF frequency
 - Space charge unimportant
- Motivation for FFAGs is cost reduction
 - RF systems most expensive part of machine
 - Make more passes through RF (than RLA)
 - Also reduces average power consumption

Challenges of Accelerating Muons

- Avoid decays: rapid acceleration (>1 MV/m average)
 - □ No time to ramp magnets
 - □ No time to adjust RF phase
- Large transverse emittance
- Large longitudinal emittance
- Beam loading can't be ignored
 - Especially true with multiple cavity passes

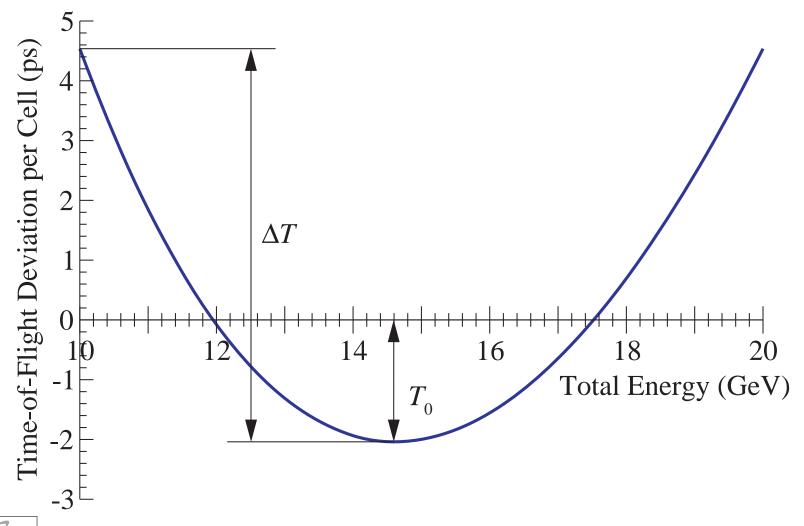
Muon Acceleration with FFAGs Accelerating Mode

- ONo time to add energy to cavities between turns
 - Too much power required
 - Initial stored energy used for all passes
 - □ RF phase constant
- Time of flight depends on energy
- Beam arrives at different RF phases
- Will eventually leave crest
- Beam loading eventually limits passes also

Muon Acceleration Linear Non-Scaling FFAGs

- Muon acceleration: lack some problems found in proton acceleration
 - No nonlinearities from space charge
 - Accelerate very rapidly through resonances
- Thus keeping tune constant not important
 - Except one problem later...
- Horizontal aperture smaller than scaling FFAG
 - Most bending occurs in defocusing magnet

Muon Acceleration Linear Non-Scaling FFAGs



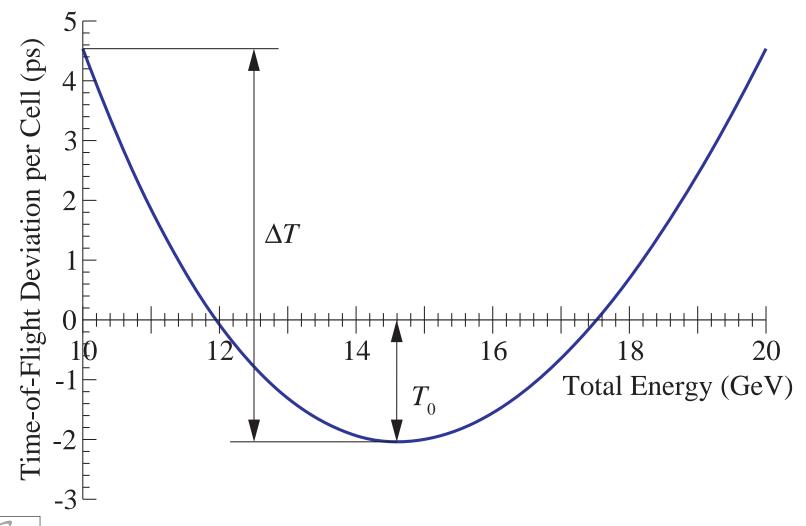
- Beams highly relativistic
 - Energy variation of time from path length
- Isochronous within energy range
 - Consequence of small horizontal aperture
 - Small time of flight variation
 - Longer time before drifting off RF crest
 - □ Allows high RF frequencies (200 MHz)
 - Smaller time variation, shorter RF period
 - Compatible with cooling

Muon Linear Non-Scaling FFAGs Time of Flight Variation

Muon Acceleration Linear Non-Scaling FFAGs

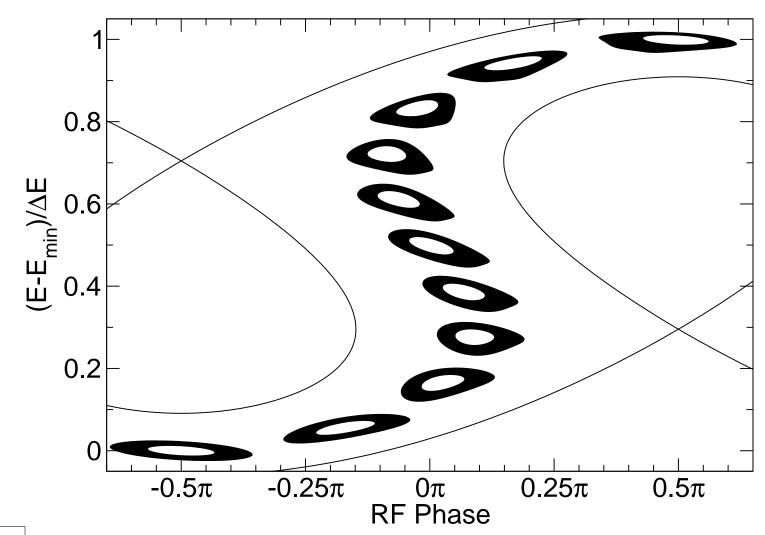
- Higher energy FFAGs more efficient
- Required circumference increase more slowly than energy
 - Related to magnet apertures
- Fewer turns at lower energy
- Don't compete with RLAs (4–5 turns) at low energies (below 2.5 GeV)

Muon Linear Non-Scaling FFAGs Longitudinal Dynamics



- Time vs. energy parabolic
- Allows 2 energies synchronized to RF
- Cross RF crest 3 times
- Maximizes time before leaving RF crest
 - More turns

Muon Linear Non-Scaling FFAGs Time of Flight Variation



Muon Linear Non-Scaling FFAGs Longitudinal Dynamics

Muon Linear Non-Scaling FFAGs Time vs. Transverse Amplitude

- Beams have large transverse size/angles
- Larger transverse amplitude, longer particle path length
- Proportional to tune variation with energy
- Less problem with synchrotron oscillations
 - Late particles become early

Muon Linear Non-Scaling FFAGs Time vs. Transverse Amplitude

- Fixes for the problem
 - Most promising: increase average RF gradient
 - Cuts effect in half
 - Significant reduction in passes
 - Importance of high gradient cavities
 - □ More cooling!
 - Reduce tune variation with energy
 - Nonlinear magnets: dynamic aperture

Linear Non-Scaling FFAGs The EMMA Experiment

- Linear non-scaling FFAGs have never been built
- Test our understanding of dynamics
 - Without complication of space charge
- The EMMA experiment
- More in next talk...

- Reasons to use
 - No time of flight variation with amplitude
 - Greater energy range per stage
 - Increased apertures: not cost effective?
- Reasons not to use
 - Larger apertures than non-scaling
 - Forced to low frequency RF

Scaling FFAGs Magnet Apertures

- Larger apertures than non-scaling FFAG
 - Most bend must (?) be in focusing magnet
- Could use warm or superferric magnets
 - Horizontal aperture not as important to cost
 - Circumference may be OK at these energies
 - Especially low energy stages

Scaling FFAGs RF Frequency

- Time of flight varies monotonically with energy
- Larger time variation with energy than non-scaling
- Cross crest twice, not 3 times
- Requires low (≈15 MHz) RF frequency to stay near crest
 - High gradients challenging at this frequency
 - Incompatible with efficient 200 MHz
 capture/cooling system

Scaling FFAGs Harmonic Number Jump

- Consider harmonic number jump
- Same difficulties as proton driver, plus...
- Must fill ring with cavities
 - All cavities can't have phase synchronized
 - Possible for limited number of turns
 - Many different frequencies
 - Only one muon sign
- Difficulty keeping long trains synchronized

Nonlinear Non-Scaling FFAGs

- Two conditions one could try to meet
 - □ No time of flight variation with energy
 - Not so important: aperture, circumference, and average gradient determine cost
 - No tune variation with energy
 - Help time variation with transverse amplitude
- Examples thus far have insufficient dynamic aperture for muons

- Beam extracts energy from cavities
- Different bunches in train gain different energies
 - □ No synchrotron oscillations to fix
 - Can be corrected later
- Multiple proton bunches per cycle
 - \square Must follow in rapid succession (40 μ s total)
 - □ No time to restore cavity energy
 - Many passes: more energy extracted

Conclusions

- FFAGs: applications in making neutrino beams
 - Proton drivers
 - lonization: ion production, muon cooling (?)
 - Muon acceleration
- Proton driver
 - Allow rapid acceleration to high energies
- Muon acceleration
 - Allow large number of passes through RF

Conclusions R&D Needed

- RF manipulation in proton FFAGs
 - Rapid frequency variation, high gradient
 - Harmonic number jump
- Space charge limits in proton FFAGs
- Optimal handling of large transverse amplitude
- Scaling FFAGs for muons
- Beam loading in muon FFAGs
- FFAG experiments: EMMA, MINHA

